THE

Patobook

Tom Hirschowitz

Pierre-Etienne Meunier
Christophe Raffalli

WHY PATOLINE ?

Patoline is a new system of typography, aiming at being an alternative to TeX and other
word-processing systems. Its name is to be pronounced like “Pa-toe-leen”, and it is the
frenchification of the translation in portuguese of a joke in english, as a reflect of the
goal of patoline's authors of typesetting any possible language, with any set of symbols,
and writing system, possibly in more than one dimension (so as to typeset the language
of category theory, for instance). Originally, Patoline was developed without any real
name, and tested on a document named “doc.txp”. Tom Hirschowitz came with this pun,
that we shall call it Daffy, so that the name would at least make sense on the test case.
Then, Elisa Meunier remarked that our pun made no sense in portuguese, since Dafty
Duck's name was different in Brazil. We then decided to change the name, before Pierre
Hyvernat and Pierre-Etienne Meunier finally gave it this french touch it has now during
one of our project meetings.

This project was started in a french maths laboratory called LaMa, in the french
alps. The original idea for a new typesetting algorithm was mine, but would probably
have stayed at the state of a mere idea without the support and large contributions
of Florian Hatat, Tom Hirschowitz, Pierre Hyvernat, Christophe Raffalli and Guillaume
Theyssier.

By the way, as of version 1.0 of Patoline, the goal of “typesetting any language with
any symbol set” has not been completely achieved, although significant advances have
been done in this direction, and this is still one of our main goal. Moreover, we will
certainly recognize the arrival of Patoline 2 by its ability to handle multi-dimensional
typesetting.

Patoline is based on the idea that an author should focus on the structure of his
documents, and let the machine care about their appearance. However, the fact that it is
written and extensible in a modern language makes it easy to change the appearance of
documents, in the most generic way known — that is, by using Turing machines — when
one wants to do so. This does not necessarily means that anyone who is going to use
Patoline needs to forge Turing machines. Instead, it means that the possibility offered
to anyone to do so in a simple and fast way, will hopefully yield a lot of high quality
extensions within a reasonable amount of time, usable by any Turing-machines-reluctant
user to achieve outstanding quality in any document very quickly.

http://lama.univ-savoie.fr
https://maps.google.com/maps?q=LAMA+-+Univ.+Savoie+-+Batiment+Chablais,+Rue+du+Lac+de+la+Thuile,+Le+Bourget-du-Lac,+France&hl=en&ie=UTF8&ll=45.642252,5.865798&spn=0.002877,0.006598&sll=45.069641,5.888672&sspn=2.9755,6.756592&oq=lama+le+bou&t=h&hq=LAMA+-+Univ.+Savoie+-+Batiment+Chablais,&hnear=Rue+du+Lac+de+la+Thuile,+73370+Le+Bourget-du-Lac,+Savoie,+Rh%C3%B4ne-Alpes,+France&z=18
https://maps.google.com/maps?q=LAMA+-+Univ.+Savoie+-+Batiment+Chablais,+Rue+du+Lac+de+la+Thuile,+Le+Bourget-du-Lac,+France&hl=en&ie=UTF8&ll=45.642252,5.865798&spn=0.002877,0.006598&sll=45.069641,5.888672&sspn=2.9755,6.756592&oq=lama+le+bou&t=h&hq=LAMA+-+Univ.+Savoie+-+Batiment+Chablais,&hnear=Rue+du+Lac+de+la+Thuile,+73370+Le+Bourget-du-Lac,+Savoie,+Rh%C3%B4ne-Alpes,+France&z=18

In this book, we tried to follow a logical progression when introducing the concepts
and ideas of our system, and to provide progressive exercises to help you to get a good
understanding of our system in little time. If there is anything you do not understand
perfectly well, do not hesitate to tell us: our common address, at the time of this writing,
1s mltypography@googlegroups.com

mailto:mltypography@googlegroups.com

] FIRST DOCUMENTS

1.1 PARAGRAPHS AND SECTIONS

While it is always possible to compile empty documents with Patoline, these may not be
the most interesting ones. Patoline does not have any real graphical interface for now,
although it includes a quite good emacs mode, partly generated automatically to match
the grammar you select. The instructions are given in chapter 7. So, let us assume that
you managed to install patoline on your system, to open a text editor on a blank file. Then,
you would write your first Patoline document hello. txp:

Hello, world !

To see the result, just write in a terminal the following command, in the same
directory as your file:

patoline hello.txp

The result should be a pdf file, named hello.pdf, with one page containing your
text. The choice of pdf files as the default output format is only to avoid breaking the
habits of TeX users. Patoline can output its result to other formats, and new output
drivers can be written quite easily, as we will see in section 6.4. There is also a way to
typeset several paragraphs: by writing them with at least one line of blank space between
them, like on the following example:

This is my first paragraph.
This is my second one.
You may have noticed that the paragraphs all start with an indentation (a space

at the beginning of the first line), except if they are immediately after the beginn-
ing of a section. This follows the typographic rules described for instance in . If you

are unsatisfied with this behavior, you can change it readily by using the following

code:

\begin{noindent}

This paragraph is not indented.

Neither this one.

\end{noident}
\indent But this one is.

As we already stated above, the preferred encoding system to typeset text in Patoline
is UTF-8 (see for instance the wikipedia article for more details). This choice is not
completely arbitrary, and we will see later how to change it to your favorite encoding. If
you want to test this feature right now, you could write for instance the following
sentence in portuguese in a blank file in your favorite text editor, and get a pdf file with
the expected result:

Patolino é um pato de televisao.

Now, you may want to add structure to a document. For instance, to get a document

with two sections named “Sex of the angels” and “Reproduction of the angels”, respec-

tively, one would write:

=> Sex of the angels

=> Reproduction of the angels

This simple code handles section numbering and typesetting for you, and registers
these sections for later use in a table of contents, for example:

=> Table of contents

http://en.wikipedia.org/wiki/UTF-8

\tableOfContents

=<

=> Sex of the angels

=> Reproduction of the angels

The problem, when trying to compile this document, is that the section titled “table
of contents” itself gets numbered, and included in the table of contents. There are finer
options to control this behavior. Specifically, we could have replaced the couple =>, =<
by -> and -<, or .> and .<, respectively.

Exercise 1.1.1 Try these commands: in the above example, replace:

=> Table of contents
\tableOfContents

=<
By a version using -> and -<, then .> and .<, instead of => and =<.

As you may have noticed, a new kind of “command” appeared in our last example:
“\\table0OfContents”. Any item in Patoline beginning with \\ is not typeset as such, but
instead calls a command modifying the output. Of course, there is also a way to get a "\\
in the output, by writing “\\\\”. At the end of this book, you will know how to create all
kinds of new commands.

1.2 MORE STRUCTURE

Sometimes, the global structure of documents is not restricted to sections and para-
graphs. Patoline allows you to use in-text structures, such as numbered lists, and cross-
references. The first case we will consider here is a structure called enumerate, for creating
numbered lists, like for instance the following one, with two items:

1. First item
2. Second item

To get such a list, write the following Patoline code in your document:

\begin{enumerate}
\item First item
\item Second item

\end{enumerate}

This way of applying a command on a whole part of the document with \begin{..}
and \end{..} is called an “environment”. Another example is non-numbered lists; this one
is called “itemize”:

- First item
- Second item

Exercise 1.2.2 Open a new file, and create two lists: one numbered, the other one
unnumbered. Then compile your file.

It is not hard to see why itemize and enumerate are two examples of the same idea
of numbering structures; the difference is that the numbering system used by itemize is
somewhat simpler than the one used by enumerate. We will see in section 3.3 how to create
new numbering systems generalizing these, and even how to create new environments.

Exercise 1.2.3 Environments itemize and enumerate both define a new command, called
\\item. There are many other environments in Patoline, not necessarily linked with text
structure. Can you test and tell what the following environments are for ?

- center

- raggedLeft

- raggedRight

There is also a more general enumeration environment:

\begin{genumerate} (AlphaLower, fun s -> [tT (s™". ")1)
\item First item
\item Second item

\end{genumerate}

Which produces:
The environment genumerate takes an argument which is an OCaml value: a pair
with two arguments:

- AlphaLower which could also be Arabic, AlphaUpper, RomanLower or RomanUpper.
This tells what king of numerals you want to use. Try it!

- funs -> [tT (s”". ")] is a function taking a string s and return Patoline content.
This is descibed later in this book. Here, we add a period and a space after the string
which contains the numeral.

There is also a syntactic sugar for genumerate and the following produces the same
result:

\begin{genumerate}{&a.~}
\item First item
\item Second item

\end{genumerate}

With this abbreviation, &1 will be replaced by the item number in numerals and you
may guess (or try) the effect of &a, &A, &1, &I. Remark: we have to force the final space
to be kept using ~ (we could also use \hspace).

1.3 THEOREMS AND DEFINITIONS

Finally, there is one more structure that we need when writing math articles: definitions
and theorems. These are not defined by default in Patoline. In order to load them, we
need to tell Patoline that we are going to use a particular format for our document.
Document formats may contain lots of additional commands, and Patoline comes with
several different formats. For the moment, since we just want to typeset definitions
and theorems, it is enough to use the format for writing articles. This format is called
FormatArticle, and we can use it in our document by beginning the file with a special
command:

(* #FORMAT FormatArticle *)
Then, you can get a theorem by writing:

(* #FORMAT FormatArticle *)

\begin{theorem}

This theorem is a theorem

\begin{proof}

The proof is trivial, since the theorem is a tautology.
\end{proof}

\end{theorem}

» o« » o«

This formats also defines environments “lemma”, “proposition”, “example”,

“definition”, “corollary”,“hypothesis”. We will explain later how to define new
theorem-like environments.

1.4 COUNTERS

We need to introduce another tool linked with structures, that we can use to write
documents, called counters. We will see in section 3.2 how to manipulate counters in a
more precise way. For now, the only thing we need to know is that there are named
counters, that get incremented automatically. One of the major interests of counters is to
reference automatically parts of the document. For instance, if we give a label to a section,

we can reference it:

=> Section \label("section with label")

We put a label in section \sectref("section with label").

This way, if you add a new section to a huge document of yours, or even worse, if
you are collaborating with someone, you will have the guarantee that references follow
your initial thought, and not simply a particular stage or version of your work. Notice
the syntax: intuitively, the labels are not to be typeset in the final documents: they
are just hints, or nicknames, we may give to our sections. Hence the syntax: with
parentheses and quotes instead of curly brackets, as these last ones, in Patoline syntax,
mean “typeset text”.

A more general way to reference counters is to call them by their name. Actually,
\\sectref is only a shortcut to the more powerful syntax
\\generalRef (" _structure")("name"). We could rewrite the last example like this:

10

=> Section \label("section with label")

We put a label in section \generalRef(" structure")("section with label").

The ' ' at the beginning of a counter's name means that it is an internal counter, and
that Patoline may manipulate it in a particular way. But actually, the underscore is the
only difference: you should avoid creating counters with underscores as the first letter,
in order to not get unexpected behaviors when Patoline changes their value. But if you
want to touch these counters, fine! Patoline is designed in a way that doing so will merely
result in mistakes in your table of contents, but nothing worse.

In the following exercise, you'll understand the full generality of the counter system:

Exercise 1.4.4 Given that the item counter in environments itemize and enumerate is
called “enumerate”, make a reference to an item of our numbered list example using

\\generalRef.
1.5 STYLE

Many persons are dissatisfied with the abilities of typesetting systems to change the
styles of their texts: it often requires lots of mouse interaction, frequently obfuscated in
“menus” and “dialog boxes”, or they have too restricted capabilities. The idea in Patoline
is to allow the user to change styles easily. Although we are not able to fully explain the
execution model beneath this for now, let us give only a few examples:

- Changing the font size, for instance to 2 millimeters, is done by \size(2.){Blabla}.
What we call the “font size”, or the “em size”, in typography, was originally the size
of the small metal blocks on which the letters were cast. Since the whole alphabet
was cast on blocks of the same size, a “font size” could be defined. Nowadays, with
computer typography, this definition has more of an indicative value: no letter can
normally get out of the “em grid”, but this may exceptionally happen.

We must signal from now that, although the authors of Patoline all have great
consideration for the historical or folkloric measurement units (such as those defined
in terms of “feet”, “yards” or “inches” of someone), the units used in Patoline are
those defined by the Conférence international des poids et mesures, usually known as the
“International System”.

11

- At the time of writing this book, the color system in Patoline is not completely
finished. Indeed, this is a quite complicated topic, as color perception depends on the
precise screen, printer, ink quality, that one is seeing a document on. Moreover, each
eye sees colors differently. Many proprietary systems have been marketed to graphic
designers, even though economic interests of the very companies managing these
so-called “standards” may compromise the portability and durability of their work.

Anyway, a few colors have been defined for now, such as black, white, blue,
green, red, , purple, , , and gray. Using them on your text
is simply a matter of writing \color(red){This is red}. You can also get more
by mixing: for instance, \color(mix 0.3 purple pink){Bla} gives you the color
resulting from mixing 30% of purple and 70% of pink. Composing 40% of the
resulting color with 60% of yellow can be done by using parentheses: \color(mix 0.4
(mix 0.3 purple pink) yellow){Bla}. The command only asks you the proportion x
(between 0 and 1) you want of the first color; the other 1-x are automatically filled
with the other color.

- Fonts are way simpler (or at least they should be), and Patoline was initiated with the
idea that anyone willing to control fine points of his typography should be able to do
so, while providing a great default result even without finer adjustments.

The most complicated point with fonts is that the thing typographs call “glyphs”
do not correspond perfectly to the intuitive idea of “character”. The belief in the
opposite has been propagated for quite a long time among software developers by
Adobe in all versions of its postscript and pdf proprietary formats, and corresponding
software and hardware.

For instance, as you may have noticed by now, when we wrote “fi” in this book,
the result was different from the naive version of simply an f followed by an i. This
one would look more like fi.

To change fonts, here are the commands:

- \italic{example} makes your text italic. “Italic”’, in typography, means that
glyphs look as if they were written by hand, and it is not the same as “oblique” or
“slanted” fonts (which also exist). For instance, the default font for writing maths
in Patoline is italic, but not slanted. Some fonts may have their italic versions
also slanted, such as Patoline's default font, called Alegreya.

- \bold{example} makes your text bold. Classically, heavy use of bold fonts is
considered bad style, as it tends to distract the reader's eye. According to
Bringhurst , bold fonts are a quite recent addition to the tools of typography,
and it is very rarely justified.

12

- \sc{example} typesets your text in PETITES CAPITALES. These are generally used
to mark sections without perturbing the “color” of the page (color, in typography,
means the ink density on the page). They can also serve to typeset acronyms,
when full capitals are not required, or distracting.

The complexity of using other font families is that you need to tell Patoline
something about the structure of the new family. But don't worry: Patoline has a
pretty good library for handling fonts, and you can use virtually any font you like
with Patoline, and even define maths grammars using your favorite fonts. We'll see
that later.

Exercise 1.5.5 Can you write bold italic text ?
1.6 INCLUDING FROM EXTERNAL FILES

Sometimes, a file gets too long to be easily handled and understood by other systems,
such as revision control software, or coauthors. In these cases, Patoline offers a
mechanism called “file inclusion”, that allows you to split your files, and include them
transparently. A consequence of this feature is that you can include the same file from
different documents, and even include the same file several times in one document, for
instance if it contains a picture. It is also possible to compile the external file alone, for
instance to test it, or because you are writing proceedings of a conference, for instance. A
special macro is provided to do this, called \\Include. Say you have two files, filel.txp
and file2.txp. To include the contents of file2. txp from filel. txp, you would simply
write the following line in filel. txp:

\Include{File2}

Remark the upper-case first letter: this comes from the way Patoline detects depen-
dencies between files. Even if the first letter of file2.txp is lower-case on the filesystem,
it should be included as File2.

1.7 FIRST DRAWINGS
A last thing we need to talk about, in this introductory chapter, is a first way to add

graphics to your text. For now, let us assume that you have produced a png image called
“pato.png”. To include it, use the command \\includeGraphics("pato.png"):

13

14

Since most raster graphics do not specify an “optimal” size of the pixels they define,

our command includeGraphics alone is often not enough, and we need to rescale our

pictures. For this purpose, you can use the following command:
\id(includeGraphics ~scale=0.2 "pato.png")

Even if this may look somewhat cryptic for now, you can simply set ~scale=x with
any value of x that you like. Note that even if the scale you chose is an integer, a point
is required to make Patoline understand that it is really a decimal number. For instance,
you must write “2.” instead of simply “2”. We will explain in further detail in the sequel
what it means exactly. Anyway, this syntax is by no means Patoline's definitive syntax

(any suggestion is welcome!).

15

16

), MATHEMATICAL FORMULAS

Patoline's mathematical system is based on a syntax quite close to what you would
use to speak orally of mathematics, on the phone, for instance. But, since Patoline is a
computing program, and not a fellow mathematician, it is much more picky about what
it considers “valid” maths. However, unlike your colleagues, it won't complain if you try to
customize its understanding of mathematics.

Patoline's pickiness comes from the fact that it first needs to understand your formu-
las unambiguously, in order to compute the correct spacing between its symbols. Then,
it uses tricky numerical algorithms to do its best and optimize the spacing of formulas.
Even though the current version of Patoline does not compensate optical illusions, or
precisely computes ink density, this is clearly one of our long-term goals.

The grammar of mathematical formulas is based on a technology called dypgen, that
allows for ambiguous grammars. If your grammar is ambiguous, that is, the same valid
expression may have different meanings, then Patoline will not be able to find the right
spacings, and will tell you to correct it. Most of the time, adding curly brackets at the right

places is enough to satisfy it.
2.1 TYPING MATHS IN PATOLINE

Most mathematical formulas, in patoline, are typed between $ signs. For instance,
writing x yields the following result: x. Writing operations is not much more compli-
cated: a + b is simply written $a+b$. Again, like \\\\ yielded a \\ sign in the output,
\\$ can be used to get a plain § sign.

There are thirteen classes of special symbols in Patoline:

Additive operators, like + or U

Multiplicative operators, like 5 x or N

Big operators, like >_ or [

Prefix operators, like +, — or -

Postfix operators, like !

Arrows, like —, =, < or -»

N AR Wb e

Logical connectors, like A, V, —

17

10.
11.
12.

Relations, like =, €, or =
Quantifiers, like V or 3
Negations, like —
Punctuation, like ..., . or
Delimiters, like {}, () or |||

These symbols all have a way to call them in ascii; that is, they can all be called by

a normal Patoline command like \\int or \\forall, with no special or accentuated

characters. However, many symbols have a unicode representation, and Patoline also
accepts UTF-8 encodings of these. Several symbols have already been defined in Patoline.
Chapter ?? of this book is automatically generated to include all symbols from Patoline's
default grammar.

First of all, any symbol can be made a normal symbol by surrounding it with curly

braces: to get a V in the middle of a sentence, we just have to write , or {\\forall}.

To get a formula in display style, you may just use two dollar signs instead of one:

for instance, $$a+b$$ will produce the following result:

a+b

2.2 EXTENDING THE MATHS GRAMMAR

18

3 MACROS AND ENVIRONMENTS

Patoline is written in a language called OCaml. This language has several interesting
features making it a good language for this kind of projects: it is functional, and a quite
good compiler has been written for it, that does the type-inference, typechecking, and
optimization job for us. The idea of “focusing on contents instead of typesetting” is thus
respected: you do not even have to take care of performance considerations or “runtime
errors” yourself: Patoline and OCaml do most of it for you.

To understand how to write macros to simplify and automate common tasks, you will
need to understand a little more about Patoline's internal structure, and how it compiles
documents. This is the purpose of section 3.1. Then, we will see how to use this model to
write your own macros.

Patoline's interface tries to stick with basic OCaml concepts, so that even readers
unfamiliar with OCaml programming can find their way quickly through the api. If you
find something too complicated, or if you see a possible simplification, we would be

happy to hear about it.
3.1 THE EIGHT LAYERS OF PATOLINE

Patoline is a layered system. Each layer is a representation of your document, and at

each step of the process, a different module is used. This way, if you are dissatisfied with

a module or another, you can replace them, and still benefit from the work done in other

parts. For instance, experience suggests that few Patoline users will want to rewrite the

font or pdf library, while agreeing on an input language is difficult, and writing parsers is

quite easy.

1. The first layer is high-level code. That is, the code we have described since the
beginning of this book.

2. This code is then translated to ocaml source code.

3. The ocaml code is compiled and linked against an ocaml library called “Typography”,
and an output driver library, such as the one called Pdf, or SVG. Patoline relies on
ocaml tools to automatically detect the dependencies of your document.

19

4. Then, the resulting program is executed, generating a document structure, which is
actually a tree structure. We may write functions to modify this tree, which is the way
most “environments” work.

5. This structure is then converted to an array of “paragraphs”, a paragraph being itself
an array of small rectangular boxes, each containing an elementary graphical element.

6. Then, the paragraphs are broken into lines and pages. We call this process the
“optimizing layer”. The result is an array of pages, which are themselves lists of lines.

7. These lines pass through an “output routine”’, which convert them to basic graphical
elements, the same kind of elements that are contained inside boxes at step ??.

8. Finally, the output routine calls an output driver with these graphical elements, which
can do anything with them, such as writing them into a pdf file, displaying them on
the screen, saving them in ocaml format with output value, or anything else.
Macros are always written in OCaml. They may be written in external files, or inlined

in your documents. Before beginning more detailed explanations, you may want to check
the documentation of Patoline's main library, called Typography:
http://lama.univ-savoie.fr/~meunier/patoline/Typography.doc
This library is usable independently of the main compiler, by using ocamlfind, for
instance, with package Typography.

3.2 TEXT AND MATHS MACROS

As you probably understood it, the goal of a macro is to generate an ocaml data structure
that will be used in the highest level structures of the executable: that is, inside the
document tree. There are several different types of contents that a macro may return. For
now, we will mainly focus on the text contents, and raw boxes (the “door” to the inferior
layer). Let us define a first macro:

\Caml(

let a ()=[]
)

\a

This macro does nothing: it returns an empty list of content elements, that will be
integrated to the document. Not really interesting, but still a good start: for instance, we
may already notice that macros always take arguments in Patoline. If no arguments are
necessary, then they are given () as their only argument by the high-level parser. This is

20

http://lama.univ-savoie.fr/~meunier/patoline/Typography.doc

to control macro evaluation: for instance, if a macro has side effects, then we surely want
to execute the side effects each time we call it. Let us add more contents to our macro:

\Caml(

let a ()=[tT "Macro"]
)

\a

tT is the text constructor, at this level of content. It is defined in module
Typography.Document of package Typography. Its argument is a string, that will be
converted to glyph boxes before optimization, according to the current font parameters.

As we already pointed out, any argument passed to a macro between curly braces is
considered “text to be typeset”, that is, arguments at the same level of content as our 'a’
macro. To see that, you could do:

\Caml(
let a x=x
)
\a{Macro}

Now, we need more knowledge of module Typography.Document, in order to
understand how to modify content structures. Specifically, we need to know that tT is not
primitive: it allocates a font cache and stores the string, along with this cache, into the
primitive constructor called T. Let us just ignore this cache, and see what we can do with
this constructor:

\Cam1(
let caps x=List.map (fun content->match content with
T (t,)->tT (String.capitalize t)
| _->content
) X
)
\caps{bla}

The other frequently used constructor is B, and we use it to generate raw boxes,
which are the types used in the next level. The interface of boxes is defined in interface

21

Typography.Box, so you can check the documentation of this module for more details.
Usually, this constructor is used to make drawing boxes, as in the following example:

\Caml(
let dr ()=
[bB (fun ->

[Drawing (drawing [Path (default,[rectangle (0.,0.) (10.,10.)1)1)]
)1

\dr

In this example, we needed a few more constructs. The first one is Path, defined
in Typography.OutputCommon. Actually, a drawing is a collection of graphical elements,
among which paths, glyphs, hypertext links and raster images. The whole list is given
in the documentation of Typography.OutputCommon. Again, all measurement units in
Patoline are metric. The rectangle we have just drawn is actually a square of 1cm by
1cm.

Now, what we call a path is a list of arrays of Bezier curves. Each array of the list is a
connected path. More than one element in the list means that the surface we are drawing
has holes. I'll let you experiment on that:

Exercise 3.2.1 Draw a rectangle, with a rectangular hole inside.

Another important type of constructor that one may need is called C. This is a
constructor containing a function of the environment to a list of other content construc-
tors (or Cs again!).

For instance, to typeset the state of a counter, we may use:

\Cam1(
let counter c=
[C (fun env->
let ,counter=try StrMap.find c env.counters with Not found -> -1,[0] in
[tT (String.concat "." (List.map string of int counter))]

)]

22

A few explanations may be needed in order to understand this command. What we
call a counter is a couple (a,b), where a is called the counter's level, and b its value. The
level is meant to control when the counter is reset: every time the structure counter
value stack goes below length a, b's top of the stack is popped, and replaced by a 0. A
counter level of -1 means the counter is never reset.

One more word on counters: they are stacks because this is sometimes needed. Recall
for instance environment enumerate, that we defined in section 1.2. If one of the items
uses a new enumerate or itemize environment, the same counter will be used; this is
possible only if \\begin{enumerate} pushes a new zero on the counter stack.

Now that you understand counters, what about the following exercise:

Exercise 3.2.2 If you recall section 1.4, the most basic counter is called " structure”.
Call our freshly defined counter macro on this counter. Then put it inside => and =<.
How does the counter value change with sections ?

There are many things to say about the environment, but maybe the most useful
thing you need to know right now is about names. The environment has a record field
called names, in which all the labels of a document are stored, along with their positions
and the state of all counters at the time it appeared. Unless you know what you are
doing, this record field should never be accessed directly. Instead, you should call func-
tion Typography.Document.names on the environment to access it. This is to prevent
the activation of caches in the case the initially computed position is changed after
compilation. Example:

=> First section

\Cam1(
let mark labelType name=
[Env (fun env->
{ env with names=StrMap.add name
(env.counters, labelType, Layout.uselesslLine)

(names env) })

let remark name=

[C (fun env->

23

let (counters, ,)=StrMap.find name (names env) in
let ,str=StrMap.find " structure" counters in
[tT ("At the time of typesetting name "“name”

", counter structure was in state ");

tT (String.concat "." (List.map string of int str))]

\mark("test") ("example")

\remark("example")

Then, upon invoking patoline on this example, it will need to iterate the optimization
algorithm, in order to resolve its position. Since we have placed no marker in the
document, but only modified the environment, there is no reason the name should be
resolved. We need to place a marker, which can be done by modifying the above example
like this:

=> First section

\Cam1(
let mark labelType name=
[Env (fun env->
{ env with names=StrMap.add name

(env.counters, labelType, Layout.uselesslLine)
(names env) });

bB (fun ->[User (Label name)])

]

let remark name=
[C (fun env->
let (counters, ,)=StrMap.find name (names env) in
let ,str=StrMap.find " structure" counters in

[tT ("At the time of typesetting name "“~name”™

24

", counter structure was in state ");
tT (String.concat "." (List.map string of int str))]
)]

\mark("test") ("example")

\remark("example")

Since markers are an information used by the optimizer, we need to talk to it directly
through boxes. The special kind of boxes used to make markers is called User. Read the
documentation of module Typography.Box to find all possible markers.

Moreover, module Typography.Document contains everything needed to create and
manipulate counters. Just remember that counter names beginning with a ' ' are
reserved, and you may confuse Patoline if you change them. An example internal behavior
using this feature is the reset of all counters up to level x when counter _structure

is changed.

3.3 DEFINING ENVIRONMENTS

An environment, that is, a global command acting on a portion of the document, is called

with \\begin{bla} ... \\end{bla}. In this section, we will see how to define new ones,

as well as a few examples of definitions and general methods that you may find useful.
First of all, the following exercise will allow you to get a good understanding of how

environments are compiled to ocaml code:

Exercise 3.3.3 Write the following code to a file called environments. txp:

\begin{test}

\end{test}

Now compile this file with patoline --ml environments.txp, and examine the resulting
file, called environments.tml.

25

Now that you understand how environments are compiled, we need to tell more
about how the document structure is represented in Patoline. A document, internally,
is an element of type Typography.Document.tree. At the beginning of any document,
Patoline creates a module called D, containing several fields, among which a reference
to a zipper over type Typography.Document.tree, in a field called structure. The idea
of this module is to get a “state monad-like” behavior, especially when including other
modules, as we saw in section ??. Patoline compiles external inclusions as ocaml files with
extension .ttml, containing a single functor taking this D module as its arguments, and
doing the same as a regular . tml file would do. This way, each different inclusion of the
same file gets instanciated properly at the correct position in the document, indepen-
dently of the number of times it appears, and the order on the compilation order we give
to the ocaml compiler.

3.3.1 Document zippers

Most beginners in Patoline, not acquainted with functional programming, will probably
wonder what a zipper is. A zipper is nothing more than a data structure, and an marker
on a particular position in it. It is a good way to functionally edit structures such as a
tree, since we can do the edition locally, without specifying paths to the node we are
editing. At the same time, it is a persistent data structure, meaning that a function can
“save” a particular version of the tree for later use; the “current version” may still evolve,
the saved one will stay the same, and the two versions will share as much memory as
possible.
Now, if you look at the type of document structures, e.g. in module

Typography.Document, it is:
type cxt=tree * (int * tree) list

Its first component is a tree, the one we are editing. The second component is the
sequence of trees we needed to left aside, when walking from the top to the current tree,
along with the integer referencing the new subtree, at each step of the walk.

For instance, imagine a function touch changing something on document trees.
Then, to do the change, while staying at the same position, we could do:

\Caml(
let =

26

D.structure:= (touch (fst !D.structure), snd !D.structure)

A cool thing about zippers is that you can “navigate” through them in both directions,
as opposed to a tree, where the only possible direction is from the top down. For instance,
the following code goes to the upper level, if it exists, and else does nothing:

\Caml(
let _=D.structure:=
match !D.structure with
t0, ((i0,Node tl1)::s)->
Node { t1 with children=IntMap.add i0 t0 tl.children }, s

| x->x

Several functions are defined in module Typography.Document to manipulate
document zippers. Have a look at the documentation for this module.

Exercise 3.3.4 Using function top in module Typography.Document, write a macro
outputting the document graph in dot. Then compile it with command graphviz.

Here is the general things most environments defined in Patoline do:

1. Create a module called Env_example, with two functions, do_begin_env and
do_end_env, taking () as their only argument.

2. In function do_begin_env, do nothing but push the current zipper path (the second
component) on a stack. This will ensure that nested environments behave well. The
stack does not need to be common to all environments. Defining it inside your newly
created environment is fine.

3. In function do_end env, go to the saved position, do some magic on this subtree,
then change D.structure to this subtree. This way, whatever you do on a subtree
stays inside this subtree, and upon exiting your environment, the position inside the
document has not changed.

One possible way of finding your way back into a saved position is the following:

D.structure:=follow (top !D.structure) (List.rev (List.hd !env_stack));

env_stack:=List.tl !env_stack

27

Assuming that env_stack is the stack where you saved your zipper. Frequently,
do begin_env needs to create a new sub-tree, in order for your modification functions to
identify the correct part of the document, on which they must act. In this case, an exam-
ple do_begin env would look like:

let do_begin env ()=
D.structure:=newChildAfter (!D.structure) (Node empty);

env_stack:=(List.map fst (snd !D.structure)) :: !env_stack
And a corresponding do_end_env would be:

let do end env ()=
let a,b=follow (top !D.structure) (List.rev (List.hd !env stack));
env_stack:=List.tl !env_stack
(* Do some magic here with a, resulting in a' *)

D.structure:=up (a',b)

Functions newChildAfter, follow and top, as well as the empty node empty, are
defined in Typography.Document.

3.4 ACCESSING PATOLINE SYNTAX FROM WITHIN \\CAML

When writing ocaml code, using Patoline's syntax is sometimes needed. For instance,
you may want to draw a text containing maths, or simply draw text without caring about
tT and list syntax. In this case, you would do:

\Caml(

let a ()= <<a>>
)

\a

To simply write an “a”. You can also include maths:
\Caml(

let a ()= <<math example: $a+b$>>

)

2.8

\a

Finally, another similar syntax can be used to create new math commands: math
list. This one creates a list of Typography.Maths.math. Math macros do not need an
argument.

\Caml(

let a=<a>
)

$$\as$s

3.5 COMPILATION OPTIONS, FORMATS AND DRIVERS

Fortunately enough, many patterns occur with quite high frequency when typesetting
documents, and we end up writing only very few functions to customize Patoline for each
document. In a normal document such as this book, only the title page, and a few
drawings, need to use command \\Caml.

Also, the same document could be typeset to several different output formats: PDFs,
which is the default in Patoline, does not necessarily fit all needs. For instance, the PDF
specification for long-time document archiving is still confidential, and no open-source
or free compliance verifier exists. In this case, you might want to use open formats such
as SVG. But then, your output gets split between lots of different files, which may not be
convenient if you want to send them by mail, for instance.

To handle this diversity of uses, we designed Patoline with different formats and
drivers. A format is a collection of functions and environments that may be used in a
document, such as italic, itemize or theorem. This is also where output routines are
defined; these are the functions that call all the transformation functions to transform the

document at layer 4 into an output suitable for the drivers.
3.5.1 Formats

Writing formats requires time, patienc