
The Patobook
Tom Hirschowitz

Pierre-Etienne Meunier

Christophe Raf{alli

1

2

Patoline is a new system o{ typography, aiming at being an alternative to TeX and other

word-processing systems. Its name is to be pronounced like |Pa-toe-leen}, and it is the

{renchi~cation o{ the translation in portuguese o{ a joke in english, as a re�ect o{ the

goal o{ patoline's authors o{ typesetting any possible language, with any set o{ symbols,

and writing system, possibly in more than one dimension (so as to typeset the language

o{ category theory, {or instance). Originally, Patoline was developed without any real

name, and tested on a document named |doc.txp}. Tom Hirschowitz came with this pun,

that we shall call it Dafyz, so that the name would at least make sense on the test case.

Then, Elisa Meunier remarked that our pun made no sense in portuguese, since Daf{y

Duck's name was dif{erent in Brazil. We then decided to change the name, be{ore Pierre

Hyvernat and Pierre-Etienne Meunier ~nally gave it this {rench touch it has now during

one o{ our project meetings.

This project was started in a {rench maths laboratory called ,

. The original idea {or a new typesetting algorithm was mine, but would probably

have stayed at the state o{ a mere idea without the support and large contributions

o{ Florian Hatat, Tom Hirschowitz, Pierre Hyvernat, Christophe Raf{alli and Guillaume

Theyssier.

By the way, as o{ version 1.0 o{ Patoline, the goal o{ |typesetting any language with

any symbol set} has not been completely achieved, although signi~cant advances have

been done in this direction, and this is still one o{ our main goal. Moreover, we will

certainly recognize the arrival o{ Patoline 2 by its ability to handle multi-dimensional

typesetting.

Patoline is based on the idea that an author should {ocus on the structure o{ his

documents, and let the machine care about their appearance. However, the {act that it is

written and extensible in a modern language makes it easy to change the appearance o{

documents, in the most generic way known � that is, by using Turing machines � when

one wants to do so. This does not necessarily means that anyone who is going to use

Patoline needs to {orge Turing machines. Instead, it means that the possibility of{ered

to anyone to do so in a simple and {ast way, will hope{ully yield a lot o{ high quality

extensions within a reasonable amount o{ time, usable by any Turing-machines-reluctant

user to achieve outstanding quality in any document very quickly.

3

alps

in the {renchlama

Why Patoline ?

http://lama.univ-savoie.fr
https://maps.google.com/maps?q=LAMA+-+Univ.+Savoie+-+Batiment+Chablais,+Rue+du+Lac+de+la+Thuile,+Le+Bourget-du-Lac,+France&hl=en&ie=UTF8&ll=45.642252,5.865798&spn=0.002877,0.006598&sll=45.069641,5.888672&sspn=2.9755,6.756592&oq=lama+le+bou&t=h&hq=LAMA+-+Univ.+Savoie+-+Batiment+Chablais,&hnear=Rue+du+Lac+de+la+Thuile,+73370+Le+Bourget-du-Lac,+Savoie,+Rh%C3%B4ne-Alpes,+France&z=18
https://maps.google.com/maps?q=LAMA+-+Univ.+Savoie+-+Batiment+Chablais,+Rue+du+Lac+de+la+Thuile,+Le+Bourget-du-Lac,+France&hl=en&ie=UTF8&ll=45.642252,5.865798&spn=0.002877,0.006598&sll=45.069641,5.888672&sspn=2.9755,6.756592&oq=lama+le+bou&t=h&hq=LAMA+-+Univ.+Savoie+-+Batiment+Chablais,&hnear=Rue+du+Lac+de+la+Thuile,+73370+Le+Bourget-du-Lac,+Savoie,+Rh%C3%B4ne-Alpes,+France&z=18

In this book, we tried to {ollow a logical progression when introducing the concepts

and ideas o{ our system, and to provide progressive exercises to help you to get a good

understanding o{ our system in little time. I{ there is anything you do not understand

per{ectly well, do not hesitate to tell us: our common address, at the time o{ this writing,

is

4

mltypography@googlegroups.com

mailto:mltypography@googlegroups.com

1.1 Paragraphs and sections

While it is always possible to compile empty documents with Patoline, these may not be

the most interesting ones. Patoline does not have any real graphical inter{ace {or now,

although it includes a quite good emacs mode, partly generated automatically to match

the grammar you select. The instructions are given in chapter . So, let us assume that

you managed to install patoline on your system, to open a text editor on a blank ~le. Then,

you would write your ~rst Patoline document hello.txp:

Hello, world !

To see the result, just write in a terminal the {ollowing command, in the same

directory as your ~le:

patoline hello.txp

The result should be a pd{ ~le, named hello.pdf, with one page containing your

text. The choice o{ pd{ ~les as the de{ault output {ormat is only to avoid breaking the

habits o{ TeX users. Patoline can output its result to other {ormats, and new output

drivers can be written quite easily, as we will see in section . There is also a way to

typeset several paragraphs: by writing them with at least one line o{ blank space between

them, like on the {ollowing example:

This is my first paragraph.

This is my second one.

You may have noticed that the paragraphs all start with an indentation (a space

at the beginning o{ the ~rst line), except i{ they are immediately a�ter the beginn-

ing o{ a section. This {ollows the typographic rules described {or instance in . I{ you

5

6.4

7

First documents1

are unsatis~ed with this behavior, you can change it readily by using the {ollowing

code:

\begin{noindent}

This paragraph is not indented.

Neither this one.

\end{noident}

\indent But this one is.

As we already stated above, the pre{erred encoding system to typeset text in Patoline

is UTF-8 (see {or instance {or more details). This choice is not

completely arbitrary, and we will see later how to change it to your {avorite encoding. I{

you want to test this {eature right now, you could write {or instance the {ollowing

sentence in portuguese in a blank ~le in your {avorite text editor, and get a pd{ ~le with

the expected result:

Patolino é um pato de televisão.

Now, you may want to add structure to a document. For instance, to get a document

with two sections named |Sex o{ the angels} and |Reproduction o{ the angels}, respec-

tively, one would write:

=> Sex of the angels

=<

=> Reproduction of the angels

=<

This simple code handles section numbering and typesetting {or you, and registers

these sections {or later use in a table o{ contents, {or example:

=> Table of contents

6

the wikipedia article

http://en.wikipedia.org/wiki/UTF-8

\tableOfContents

=<

=> Sex of the angels

=<

=> Reproduction of the angels

=<

The problem, when trying to compile this document, is that the section titled |table

o{ contents} itsel{ gets numbered, and included in the table o{ contents. There are ~ner

options to control this behavior. Speci~cally, we could have replaced the couple =>, =<

by -> and -<, or .> and .<, respectively.

Exercise 1.1.1 Try these commands: in the above example, replace:

=> Table of contents

\tableOfContents

=<

By a version using -> and -<, then .> and .<, instead o{ => and =<.

As you may have noticed, a new kind o{ |command} appeared in our last example:

|\\tableOfContents}. Any item in Patoline beginning with \\ is not typeset as such, but

instead calls a command modi{ying the output. O{ course, there is also a way to get a '\\'

in the output, by writing |\\\\}. At the end o{ this book, you will know how to create all

kinds o{ new commands.

1.2 More structure

Sometimes, the global structure o{ documents is not restricted to sections and para-

graphs. Patoline allows you to use in-text structures, such as numbered lists, and cross-

re{erences. The ~rst case we will consider here is a structure called enumerate, {or creating

numbered lists, like {or instance the {ollowing one, with two items:

7

1. First item

2. Second item

To get such a list, write the {ollowing Patoline code in your document:

\begin{enumerate}

\item First item

\item Second item

\end{enumerate}

This way o{ applying a command on a whole part o{ the document with \begin{ê}

and \end{ê} is called an |environment}. Another example is non-numbered lists; this one

is called |itemi{e}:

First item

Second item

Exercise 1.2.2 Open a new ~le, and create two lists: one numbered, the other one

unnumbered. Then compile your ~le.

It is not hard to see why itemi{e and enumerate are two examples o{ the same idea

o{ numbering structures; the dif{erence is that the numbering system used by itemi{e is

somewhat simpler than the one used by enumerate. We will see in section how to create

new numbering systems generalizing these, and even how to create new environments.

Exercise 1.2.3 Environments itemize and enumerate both de~ne a new command, called

\\item. There are many other environments in Patoline, not necessarily linked with text

structure. Can you test and tell what the {ollowing environments are {or ?

center

raggedLeft

raggedRight

There is also a more general enumeration environment:

\begin{genumerate}(AlphaLower, fun s -> [tT (s^". ")])

\item First item

\item Second item

\end{genumerate}

8

3.3

Which produces:

The environment genumerate takes an argument which is an OCaml value: a pair

with two arguments:

AlphaLower which could also be Arabic, AlphaUpper, RomanLower or RomanUpper.

This tells what king o{ numerals you want to use. Try it!

fun s -> [tT (s^". ")] is a {unction taking a string s and return Patoline content.

This is descibed later in this book. Here, we add a period and a space a�ter the string

which contains the numeral.

There is also a syntactic sugar {or genumerate and the {ollowing produces the same

result:

\begin{genumerate}{&a.~}

\item First item

\item Second item

\end{genumerate}

With this abbreviation, &1 will be replaced by the item number in numerals and you

may guess (or try) the ef{ect o{ &a, &A, &i, &I. Remark: we have to {orce the ~nal space

to be kept using ~ (we could also use \hspace).

1.3 Theorems and definitions

Finally, there is one more structure that we need when writing math articles: de~nitions

and theorems. These are not de~ned by de{ault in Patoline. In order to load them, we

need to tell Patoline that we are going to use a particular {ormat {or our document.

Document {ormats may contain lots o{ additional commands, and Patoline comes with

several dif{erent {ormats. For the moment, since we just want to typeset de~nitions

and theorems, it is enough to use the {ormat {or writing articles. This {ormat is called

FormatArticle, and we can use it in our document by beginning the ~le with a special

command:

(* #FORMAT FormatArticle *)

Then, you can get a theorem by writing:

(* #FORMAT FormatArticle *)

9

\begin{theorem}

This theorem is a theorem

\begin{proof}

The proof is trivial, since the theorem is a tautology.

\end{proof}

\end{theorem}

This {ormats also de~nes environments |lemma}, |proposition}, |example},

|definition}, |corollary},|hypothesis}. We will explain later how to de~ne new

theorem-like environments.

1.4 Counters

We need to introduce another tool linked with structures, that we can use to write

documents, called counters. We will see in section how to manipulate counters in a

more precise way. For now, the only thing we need to know is that there are named

counters, that get incremented automatically. One o{ the major interests o{ counters is to

re{erence automatically parts o{ the document. For instance, i{ we give a label to a section,

we can re{erence it:

=> Section \label("section with label")

=<

We put a label in section \sectref("section with label").

This way, i{ you add a new section to a huge document o{ yours, or even worse, i{

you are collaborating with someone, you will have the guarantee that re{erences {ollow

your initial thought, and not simply a particular stage or version o{ your work. Notice

the syntax: intuitively, the labels are not to be typeset in the ~nal documents: they

are just hints, or nicknames, we may give to our sections. Hence the syntax: with

parentheses and quotes instead o{ curly brackets, as these last ones, in Patoline syntax,

mean |typeset text}.

A more general way to re{erence counters is to call them by their name. Actually,

\\sectref is only a shortcut to the more power{ul syntax

\\generalRef("_structure")("name"). We could rewrite the last example like this:

10

3.2

=> Section \label("section with label")

=<

We put a label in section \generalRef("_structure")("section with label").

The '_' at the beginning o{ a counter's name means that it is an internal counter, and

that Patoline may manipulate it in a particular way. But actually, the underscore is the

only dif{erence: you should avoid creating counters with underscores as the ~rst letter,

in order to not get unexpected behaviors when Patoline changes their value. But i{ you

want to touch these counters, ~ne! Patoline is designed in a way that doing so will merely

result in mistakes in your table o{ contents, but nothing worse.

In the {ollowing exercise, you'll understand the {ull generality o{ the counter system:

Exercise 1.4.4 Given that the item counter in environments itemi{e and enumerate is

called |enumerate}, make a re{erence to an item o{ our numbered list example using

\\generalRef.

1.5 Style

Many persons are dissatis~ed with the abilities o{ typesetting systems to change the

styles o{ their texts: it o�ten requires lots o{ mouse interaction, {requently ob{uscated in

|menus} and |dialog boxes}, or they have too restricted capabilities. The idea in Patoline

is to allow the user to change styles easily. Although we are not able to {ully explain the

execution model beneath this {or now, let us give only a {ew examples:

Changing the {ont size, {or instance to 2 millimeters, is done by \size(2.){Blabla}.

What we call the |yont si{e}, or the |em si{e}, in typography, was originally the size

o{ the small metal blocks on which the letters were cast. Since the whole alphabet

was cast on blocks o{ the same size, a |{ont size} could be de~ned. Nowadays, with

computer typography, this de~nition has more o{ an indicative value: no letter can

normally get out o{ the |em grid}, but this may exceptionally happen.

We must signal {rom now that, although the authors o{ Patoline all have great

consideration {or the historical or {olkloric measurement units (such as those de~ned

in terms o{ |{eet}, |yards} or |inches} o{ someone), the units used in Patoline are

those de~ned by the Conyérence international des poids et mesures, usually known as the

|International System}.

11

At the time o{ writing this book, the color system in Patoline is not completely

~nished. Indeed, this is a quite complicated topic, as color perception depends on the

precise screen, printer, ink quality, that one is seeing a document on. Moreover, each

eye sees colors dif{erently. Many proprietary systems have been marketed to graphic

designers, even though economic interests o{ the very companies managing these

so-called |standards} may compromise the portability and durability o{ their work.

Anyway, a {ew colors have been de~ned {or now, such as black, white, blue,

green, red, orange, purple, pink, yellow, and gray. Using them on your text

is simply a matter o{ writing \color(red){This is red}. You can also get more

by mixing: {or instance, \color(mix 0.3 purple pink){Bla} gives you the color

resulting {rom mixing 30% o{ purple and 70% o{ pink. Composing 40% o{ the

resulting color with 60% o{ yellow can be done by using parentheses: \color(mix 0.4

(mix 0.3 purple pink) yellow){Bla}. The command only asks you the proportion x

(between 0 and 1) you want o{ the ~rst color; the other 1- x are automatically ~lled

with the other color.

Fonts are way simpler (or at least they should be), and Patoline was initiated with the

idea that anyone willing to control ~ne points o{ his typography should be able to do

so, while providing a great de{ault result even without ~ner adjustments.

The most complicated point with {onts is that the thing typographs call |glzphs}

do not correspond per{ectly to the intuitive idea o{ |character}. The belie{ in the

opposite has been propagated {or quite a long time among so�tware developers by

Adobe in all versions o{ its postscript and pd{ proprietary {ormats, and corresponding

so�tware and hardware.

For instance, as you may have noticed by now, when we wrote |~} in this book,

the result was dif{erent {rom the naive version o{ simply an { {ollowed by an i. This

one would look more like {i.

To change {onts, here are the commands:

\italic{example} makes your text italic. |Italic}, in typography, means that

glyphs look as i{ they were written by hand, and it is not the same as |oblique} or

|slanted} {onts (which also exist). For instance, the de{ault {ont {or writing maths

in Patoline is italic, but not slanted. Some {onts may have their italic versions

also slanted, such as Patoline's de{ault {ont, called Alegreza.

\bold{example} makes your text bold. Classically, heavy use o{ bold {onts is

considered bad style, as it tends to distract the reader's eye. According to

Bringhurst , bold {onts are a quite recent addition to the tools o{ typography,

and it is very rarely justi~ed.

12

\sc{example} typesets your text in Petites Capitales. These are generally used

to mark sections without perturbing the |color} o{ the page (color, in typography,

means the ink density on the page). They can also serve to typeset acronyms,

when {ull capitals are not required, or distracting.

The complexity o{ using other {ont {amilies is that you need to tell Patoline

something about the structure o{ the new {amily. But don't worry: Patoline has a

pretty good library {or handling {onts, and you can use virtually any {ont you like

with Patoline, and even de~ne maths grammars using your {avorite {onts. We'll see

that later.

Exercise 1.5.5 Can you write bold italic text ?

1.6 Including from external files

Sometimes, a ~le gets too long to be easily handled and understood by other systems,

such as revision control so�tware, or coauthors. In these cases, Patoline of{ers a

mechanism called |êle inclusion}, that allows you to split your ~les, and include them

transparently. A consequence o{ this {eature is that you can include the same ~le {rom

dif{erent documents, and even include the same ~le several times in one document, {or

instance i{ it contains a picture. It is also possible to compile the external ~le alone, {or

instance to test it, or because you are writing proceedings o{ a con{erence, {or instance. A

special macro is provided to do this, called \\Include. Say you have two ~les, file1.txp

and file2.txp. To include the contents o{ file2.txp {rom file1.txp, you would simply

write the {ollowing line in file1.txp:

\Include{File2}

Remark the upper-case ~rst letter: this comes {rom the way Patoline detects depen-

dencies between ~les. Even i{ the ~rst letter o{ file2.txp is lower-case on the ~lesystem,

it should be included as File2.

1.7 First drawings

A last thing we need to talk about, in this introductory chapter, is a ~rst way to add

graphics to your text. For now, let us assume that you have produced a png image called

|pato.png}. To include it, use the command \\includeGraphics("pato.png"):

13

14

Since most raster graphics do not speci{y an |optimal} size o{ the pixels they de~ne,

our command includeGraphics alone is o�ten not enough, and we need to rescale our

pictures. For this purpose, you can use the {ollowing command:

\id(includeGraphics ~scale=0.2 "pato.png")

Even i{ this may look somewhat cryptic {or now, you can simply set ~scale=x with

any value o{ x that you like. Note that even i{ the scale you chose is an integer, a point

is required to make Patoline understand that it is really a decimal number. For instance,

you must write |2.} instead o{ simply |2}. We will explain in {urther detail in the sequel

what it means exactly. Anyway, this syntax is by no means Patoline's de~nitive syntax

(any suggestion is welcome!).

15

16

Patoline's mathematical system is based on a syntax quite close to what you would

use to speak orally o{ mathematics, on the phone, {or instance. But, since Patoline is a

computing program, and not a {ellow mathematician, it is much more picky about what

it considers |valid} maths. However, unlike your colleagues, it won't complain i{ you try to

customize its understanding o{ mathematics.

Patoline's pickiness comes {rom the {act that it ~rst needs to understand your {ormu-

las unambiguously, in order to compute the correct spacing between its symbols. Then,

it uses tricky numerical algorithms to do its best and optimize the spacing o{ {ormulas.

Even though the current version o{ Patoline does not compensate optical illusions, or

precisely computes ink density, this is clearly one o{ our long-term goals.

The grammar o{ mathematical {ormulas is based on a technology called dzpgen, that

allows {or ambiguous grammars. I{ your grammar is ambiguous, that is, the same valid

expression may have dif{erent meanings, then Patoline will not be able to ~nd the right

spacings, and will tell you to correct it. Most o{ the time, adding curly brackets at the right

places is enough to satis{y it.

2.1 Typing maths in patoline

Most mathematical {ormulas, in patoline, are typed between $ signs. For instance,

writing x yields the {ollowing result: x. Writing operations is not much more compli-

cated: a + b is simply written $a+b$. Again, like \\\\ yielded a \\ sign in the output,

\\$ can be used to get a plain $ sign.

There are thirteen classes o{ special symbols in Patoline:

1. Additive operators, like + or y

2. Multiplicative operators, like z, × or Ø

3. Big operators, like Ù or Ú

4. Pre~x operators, like +, - or Û

5. Post~x operators, like !

6. Arrows, like Ü, Ý, Þ or �

7. Logical connectors, like �,�, ¬

17

Mathematical formulas2

8. Relations, like =, ß, or à

9. Quanti~ers, like á or â

10. Negations, like ¬

11. Punctuation, like ã, . or ,
���� ��12. Delimiters, like , or

These symbols all have a way to call them in ascii; that is, they can all be called by

a normal Patoline command like \\int or \\forall, with no special or accentuated

characters. However, many symbols have a unicode representation, and Patoline also

accepts UTF-8 encodings o{ these. Several symbols have already been de~ned in Patoline.

Chapter ?? o{ this book is automatically generated to include all symbols {rom Patoline's

de{ault grammar.

First o{ all, any symbol can be made a normal symbol by surrounding it with curly

braces: to get a á in the middle o{ a sentence, we just have to write , or {\\forall}.

To get a {ormula in displaz stzle, you may just use two dollar signs instead o{ one:

{or instance, $$a+b$$ will produce the {ollowing result:

a +b

2.2 Extending the maths grammar

18

Patoline is written in a language called OCaml. This language has several interesting

{eatures making it a good language {or this kind o{ projects: it is {unctional, and a quite

good compiler has been written {or it, that does the type-in{erence, typechecking, and

optimization job {or us. The idea o{ |{ocusing on contents instead o{ typesetting} is thus

respected: you do not even have to take care o{ per{ormance considerations or |runtime

errors} yoursel{: Patoline and OCaml do most o{ it {or you.

To understand how to write macros to simpli{y and automate common tasks, you will

need to understand a little more about Patoline's internal structure, and how it compiles

documents. This is the purpose o{ section . Then, we will see how to use this model to

write your own macros.

Patoline's inter{ace tries to stick with basic OCaml concepts, so that even readers

un{amiliar with OCaml programming can ~nd their way quickly through the api. I{ you

~nd something too complicated, or i{ you see a possible simpli~cation, we would be

happy to hear about it.

3.1 The eight layers of Patoline

Patoline is a layered system. Each layer is a representation o{ your document, and at

each step o{ the process, a dif{erent module is used. This way, i{ you are dissatis~ed with

a module or another, you can replace them, and still bene~t {rom the work done in other

parts. For instance, experience suggests that {ew Patoline users will want to rewrite the

{ont or pd{ library, while agreeing on an input language is di{~cult, and writing parsers is

quite easy.

1. The ~rst layer is high-level code. That is, the code we have described since the

beginning o{ this book.

2. This code is then translated to ocaml source code.

3. The ocaml code is compiled and linked against an ocaml library called |Tzpographz},

and an output driver library, such as the one called Pdy, or SVG. Patoline relies on

ocaml tools to automatically detect the dependencies o{ your document.

19

3.1

Macros and environments3

4. Then, the resulting program is executed, generating a document structure, which is

actually a tree structure. We may write {unctions to modi{y this tree, which is the way

most |environments} work.

5. This structure is then converted to an array o{ |paragraphs}, a paragraph being itsel{

an array o{ small rectangular boxes, each containing an elementary graphical element.

6. Then, the paragraphs are broken into lines and pages. We call this process the

|optimizing layer}. The result is an array o{ pages, which are themselves lists o{ lines.

7. These lines pass through an |output routine}, which convert them to basic graphical

elements, the same kind o{ elements that are contained inside boxes at step ??.

8. Finally, the output routine calls an output driver with these graphical elements, which

can do anything with them, such as writing them into a pd{ ~le, displaying them on

the screen, saving them in ocaml {ormat with output_value, or anything else.

Macros are always written in OCaml. They may be written in external ~les, or inlined

in your documents. Be{ore beginning more detailed explanations, you may want to check

the documentation o{ Patoline's main library, called Typography:

This library is usable independently o{ the main compiler, by using ocaml~nd, {or

instance, with package Typography.

3.2 Text and maths macros

As you probably understood it, the goal o{ a macro is to generate an ocaml data structure

that will be used in the highest level structures o{ the executable: that is, inside the

document tree. There are several dif{erent types o{ contents that a macro may return. For

now, we will mainly {ocus on the text contents, and raw boxes (the |door} to the in{erior

layer). Let us de~ne a ~rst macro:

\Caml(

let a ()=[]

)

\a

This macro does nothing: it returns an empty list o{ content elements, that will be

integrated to the document. Not really interesting, but still a good start: {or instance, we

may already notice that macros always take arguments in Patoline. I{ no arguments are

necessary, then they are given () as their only argument by the high-level parser. This is

20

http://lama.univ-savoie.fr/~meunier/patoline/Typography.doc

http://lama.univ-savoie.fr/~meunier/patoline/Typography.doc

to control macro evaluation: {or instance, i{ a macro has side ef{ects, then we surely want

to execute the side ef{ects each time we call it. Let us add more contents to our macro:

\Caml(

let a ()=[tT "Macro"]

)

\a

tT is the text constructor, at this level o{ content. It is de~ned in module

Typography.Document o{ package Typography. Its argument is a string, that will be

converted to glyph boxes be{ore optimization, according to the current {ont parameters.

As we already pointed out, any argument passed to a macro between curly braces is

considered |text to be typeset}, that is, arguments at the same level o{ content as our 'a'

macro. To see that, you could do:

\Caml(

let a x=x

)

\a{Macro}

Now, we need more knowledge o{ module Typography.Document, in order to

understand how to modi{y content structures. Speci~cally, we need to know that tT is not

primitive: it allocates a {ont cache and stores the string, along with this cache, into the

primitive constructor called T. Let us just ignore this cache, and see what we can do with

this constructor:

\Caml(

let caps x=List.map (fun content->match content with

T (t,_)->tT (String.capitalize t)

| _->content

) x

)

\caps{bla}

The other {requently used constructor is B, and we use it to generate raw boxes,

which are the types used in the next level. The inter{ace o{ boxes is de~ned in inter{ace

21

Typography.Box, so you can check the documentation o{ this module {or more details.

Usually, this constructor is used to make drawing boxes, as in the {ollowing example:

\Caml(

let dr ()=

[bB (fun _->

[Drawing (drawing [Path (default,[rectangle (0.,0.) (10.,10.)])])]

)]

)

\dr

In this example, we needed a {ew more constructs. The ~rst one is Path, de~ned

in Typography.OutputCommon. Actually, a drawing is a collection o{ graphical elements,

among which paths, glyphs, hypertext links and raster images. The whole list is given

in the documentation o{ Typography.OutputCommon. Again, all measurement units in

Patoline are metric. The rectangle we have just drawn is actually a square o{ 1cm by

1cm.

Now, what we call a path is a list o{ arrays o{ Bezier curves. Each array o{ the list is a

connected path. More than one element in the list means that the sur{ace we are drawing

has holes. I'll let you experiment on that:

Exercise 3.2.1 Draw a rectangle, with a rectangular hole inside.

Another important type o{ constructor that one may need is called C. This is a

constructor containing a {unction o{ the environment to a list o{ other content construc-

tors (or Cs again!).

For instance, to typeset the state o{ a counter, we may use:

\Caml(

let counter c=

[C (fun env->

let _,counter=try StrMap.find c env.counters with Not_found -> -1,[0] in

[tT (String.concat "." (List.map string_of_int counter))]

)]

)

22

A {ew explanations may be needed in order to understand this command. What we

call a counter is a couple (a,b), where a is called the counter's level, and b its value. The

level is meant to control when the counter is reset: every time the _structure counter

value stack goes below length a, b's top o{ the stack is popped, and replaced by a 0. A

counter level o{ -1 means the counter is never reset.

One more word on counters: they are stacks because this is sometimes needed. Recall

{or instance environment enumerate, that we de~ned in section . I{ one o{ the items

uses a new enumerate or itemize environment, the same counter will be used; this is

possible only i{ \\begin{enumerate} pushes a new zero on the counter stack.

Now that you understand counters, what about the {ollowing exercise:

Exercise 3.2.2 I{ you recall section , the most basic counter is called "_structure".

Call our {reshly de~ned counter macro on this counter. Then put it inside => and =<.

How does the counter value change with sections ?

There are many things to say about the environment, but maybe the most use{ul

thing you need to know right now is about names. The environment has a record ~eld

called names, in which all the labels o{ a document are stored, along with their positions

and the state o{ all counters at the time it appeared. Unless you know what you are

doing, this record ~eld should never be accessed directly. Instead, you should call {unc-

tion Typography.Document.names on the environment to access it. This is to prevent

the activation o{ caches in the case the initially computed position is changed a�ter

compilation. Example:

=> First section

\Caml(

let mark labelType name=

[Env (fun env->

{ env with names=StrMap.add name

(env.counters, labelType, Layout.uselessLine)

(names env) })

]

let remark name=

[C (fun env->

23

1.4

1.2

let (counters,_,_)=StrMap.find name (names env) in

let _,str=StrMap.find "_structure" counters in

[tT ("At the time of typesetting name "^name^

", counter _structure was in state ");

tT (String.concat "." (List.map string_of_int str))]

)]

)

\mark("test")("example")

=<

\remark("example")

Then, upon invoking patoline on this example, it will need to iterate the optimization

algorithm, in order to resolve its position. Since we have placed no marker in the

document, but only modi~ed the environment, there is no reason the name should be

resolved. We need to place a marker, which can be done by modi{ying the above example

like this:

=> First section

\Caml(

let mark labelType name=

[Env (fun env->

{ env with names=StrMap.add name

(env.counters, labelType, Layout.uselessLine)

(names env) });

bB (fun _->[User (Label name)])

]

let remark name=

[C (fun env->

let (counters,_,_)=StrMap.find name (names env) in

let _,str=StrMap.find "_structure" counters in

[tT ("At the time of typesetting name "^name^

24

", counter _structure was in state ");

tT (String.concat "." (List.map string_of_int str))]

)]

)

\mark("test")("example")

=<

\remark("example")

Since markers are an in{ormation used by the optimizer, we need to talk to it directly

through boxes. The special kind o{ boxes used to make markers is called User. Read the

documentation o{ module Typography.Box to ~nd all possible markers.

Moreover, module Typography.Document contains everything needed to create and

manipulate counters. Just remember that counter names beginning with a '_' are

reserved, and you may con{use Patoline i{ you change them. An example internal behavior

using this {eature is the reset o{ all counters up to level x when counter _structure

is changed.

3.3 Defining environments

An environment, that is, a global command acting on a portion o{ the document, is called

with \\begin{bla} � \\end{bla}. In this section, we will see how to de~ne new ones,

as well as a {ew examples o{ de~nitions and general methods that you may ~nd use{ul.

First o{ all, the {ollowing exercise will allow you to get a good understanding o{ how

environments are compiled to ocaml code:

Exercise 3.3.3 Write the {ollowing code to a ~le called environments.txp:

\begin{test}

\end{test}

Now compile this ~le with patoline --ml environments.txp, and examine the resulting

~le, called environments.tml.

25

Now that you understand how environments are compiled, we need to tell more

about how the document structure is represented in Patoline. A document, internally,

is an element o{ type Typography.Document.tree. At the beginning o{ any document,

Patoline creates a module called D, containing several ~elds, among which a re{erence

to a zipper over type Typography.Document.tree, in a ~eld called structure. The idea

o{ this module is to get a |state monad-like} behavior, especially when including other

modules, as we saw in section ??. Patoline compiles external inclusions as ocaml ~les with

extension .ttml, containing a single {unctor taking this D module as its arguments, and

doing the same as a regular .tml ~le would do. This way, each dif{erent inclusion o{ the

same ~le gets instanciated properly at the correct position in the document, indepen-

dently o{ the number o{ times it appears, and the order on the compilation order we give

to the ocaml compiler.

3.3.1 Document zippers

Most beginners in Patoline, not acquainted with {unctional programming, will probably

wonder what a {ipper is. A zipper is nothing more than a data structure, and an marker

on a particular position in it. It is a good way to {unctionally edit structures such as a

tree, since we can do the edition locally, without speci{ying paths to the node we are

editing. At the same time, it is a persistent data structure, meaning that a {unction can

|save} a particular version o{ the tree {or later use; the |current version} may still evolve,

the saved one will stay the same, and the two versions will share as much memory as

possible.

Now, i{ you look at the type o{ document structures, e.g. in module

Typography.Document, it is:

type cxt=tree * (int * tree) list

Its ~rst component is a tree, the one we are editing. The second component is the

sequence o{ trees we needed to le�t aside, when walking {rom the top to the current tree,

along with the integer re{erencing the new subtree, at each step o{ the walk.

For instance, imagine a {unction touch changing something on document trees.

Then, to do the change, while staying at the same position, we could do:

\Caml(

let _=

26

D.structure:= (touch (fst !D.structure), snd !D.structure)

)

A cool thing about zippers is that you can |navigate} through them in both directions,

as opposed to a tree, where the only possible direction is {rom the top down. For instance,

the {ollowing code goes to the upper level, i{ it exists, and else does nothing:

\Caml(

let _=D.structure:=

match !D.structure with

t0,((i0,Node t1)::s)->

Node { t1 with children=IntMap.add i0 t0 t1.children }, s

| x->x

)

Several {unctions are de~ned in module Typography.Document to manipulate

document zippers. Have a look at the documentation {or this module.

Exercise 3.3.4 Using {unction top in module Typography.Document, write a macro

outputting the document graph in dot. Then compile it with command graphviz.

Here is the general things most environments de~ned in Patoline do:

1. Create a module called Env_example, with two {unctions, do_begin_env and

do_end_env, taking () as their only argument.

2. In {unction do_begin_env, do nothing but push the current zipper path (the second

component) on a stack. This will ensure that nested environments behave well. The

stack does not need to be common to all environments. De~ning it inside your newly

created environment is ~ne.

3. In {unction do_end_env, go to the saved position, do some magic on this subtree,

then change D.structure to this subtree. This way, whatever you do on a subtree

stays inside this subtree, and upon exiting your environment, the position inside the

document has not changed.

One possible way o{ ~nding your way back into a saved position is the {ollowing:

D.structure:=follow (top !D.structure) (List.rev (List.hd !env_stack));

env_stack:=List.tl !env_stack

27

Assuming that env_stack is the stack where you saved your zipper. Frequently,

do_begin_env needs to create a new sub-tree, in order {or your modi~cation {unctions to

identi{y the correct part o{ the document, on which they must act. In this case, an exam-

ple do_begin_env would look like:

let do_begin_env ()=

D.structure:=newChildAfter (!D.structure) (Node empty);

env_stack:=(List.map fst (snd !D.structure)) :: !env_stack

And a corresponding do_end_env would be:

let do_end_env ()=

let a,b=follow (top !D.structure) (List.rev (List.hd !env_stack));

env_stack:=List.tl !env_stack

(* Do some magic here with a, resulting in a' *)

D.structure:=up (a',b)

Functions newChildAfter, follow and top, as well as the empty node empty, are

de~ned in Typography.Document.

3.4 Accessing Patoline syntax from within \\Caml

When writing ocaml code, using Patoline's syntax is sometimes needed. For instance,

you may want to draw a text containing maths, or simply draw text without caring about

tT and list syntax. In this case, you would do:

\Caml(

let a ()= <<a>>

)

\a

To simply write an |a}. You can also include maths:

\Caml(

let a ()= <<math example: $a+b$>>

)

28

\a

Finally, another similar syntax can be used to create new math commands: math

list. This one creates a list o{ Typography.Maths.math. Math macros do not need an

argument.

\Caml(

let a=<a>

)

$$\a$$

3.5 Compilation options, formats and drivers

Fortunately enough, many patterns occur with quite high {requency when typesetting

documents, and we end up writing only very {ew {unctions to customize Patoline {or each

document. In a normal document such as this book, only the title page, and a {ew

drawings, need to use command \\Caml.

Also, the same document could be typeset to several dif{erent output {ormats: PDFs,

which is the de{ault in Patoline, does not necessarily ~t all needs. For instance, the PDF

speci~cation {or long-time document archiving is still con~dential, and no open-source

or {ree compliance veri~er exists. In this case, you might want to use open {ormats such

as SVG. But then, your output gets split between lots o{ dif{erent ~les, which may not be

convenient i{ you want to send them by mail, {or instance.

To handle this diversity o{ uses, we designed Patoline with dif{erent yormats and

drivers. A {ormat is a collection o{ {unctions and environments that may be used in a

document, such as italic, itemize or theorem. This is also where output routines are

de~ned; these are the {unctions that call all the trans{ormation {unctions to trans{orm the

document at layer into an output suitable {or the drivers.

3.5.1 Formats

Writing {ormats requires time, patience, and experience. Looking at

src/Format/FormatArticle.ml in the Patoline source tree, {or instance, will show you

an example o{ how to use the de{ault {ormat to write new ones. At the time o{ this

writing, only two dif{erent output routines have been written: one {or all paper-based

documents, the other one {or slides. Output routines are still a somewhat {ragile part

29

4

in Patoline, and the api may changed quickly to ~t more complex situations than it

does now.

To select a {ormat other than the de{ault one when compiling your document, {or

instance one called |OtherFormat}, you can simply call Patoline with option --format

OtherFormat. There is a better option though: i{ your document uses {ormat-speci~c

{eatures, or simply i{ you always want to compile it with the same {ormat, then you can

use compilation pragmas. For instance, to always compile your documents with {ormat

|OtherFormat}, just write, in the ~rst line o{ your document:

(* #FORMAT OtherFormat *)

3.5.2 Drivers

Patoline's system o{ output drivers is meant to be easy to use and extend. I{ you wrote

a document, then just invoking Patoline with command-line option --driver GL, or

--driver SVG, {or instance, is enough to see it with the corresponding drivers. O{ course,

you can also add a compilation pragma, i{ you know you'll always want this document to

be compiled with a particular driver:

(* #DRIVER SVG *)

In the particular case o{ the SVG driver, it creates a directory named document (i{

your document was named document.txp), an html ~le named index.html, and svg ~les

in this directory.

30

Patoline's drawing system is based on vector graphic primitives, quite usual {or anyone

that has already used such systems. There are essentially paths made o{ Bezier curves ({or

instance, lines are Bezier curves o{ degree 1), glyphs, and inclusions o{ raster images.

All the primitives and constructors {or this basic layer are in module

Typography.OutputCommon. There are many ways to interact with these constructs. One

o{ them is to use them directly, the other one is to use Tom Hirschowitz's Diagrams

library. We explain both in this chapter. Diagrams should be used directly when one

need to actually draw something. The more stable api o{ Typography.OutputCommon

should be used essentially when writing other libraries.

In the ~rst subsection, you will learn how to draw diagrams. In the second one,

we will show an example o{ writing a library {or using graphviz output with Patoline.

4.1 Using Diagrams

The diagrams library comes in two layers; let's start with the high-level layer.

A ~rst construct to learn is node: typing

\Caml(open Diagrams)

\diagram(

let a = node [] <<coin>>

)

yields

The ~rst argument to node is a list o{ so-called node transyormations, which are de~ned

in module Node. For example, typing

31

Drawings4

nioc

\diagram(

let a = node Node.([circle;draw]) <<coin>>

let b = node Node.([circle;fill black;at (50.,0.)]) []

)

yields

The complete list o{ de{ault node trans{ormations is yet to be documented; but they

are all de~ned in the Node module in src/Typography/Diagrams.ml. Node trans{orma-

tions {orm a directed graph (some should be per{ormed be{ore others), and the library

comes with an api to extend it. All existing trans{ormations are actually de~ned using this

api, starting {rom the empty graph.

A second thing to learn is how to construct edges between nodes. Adding let e = edge

Edge.([draw]) a b to the previous diagram yields:

There is also a graph o{ edge transyormations, which is extensible using the same api

as {or node trans{ormations (both are actually obtained by applying the same {unctor).

For example, let e = edge Edge.([draw;bendRight 30.;arrow env;dashed [2.]]) a b

yields:

Edges and nodes have a common type called gentity {or graphical entity. Graphical

entities have anchors, in the Pg{/Tikz sense. E.g., adding

let c = node Node.([at (a.anchor `West);anchor `East]) <<here>>

let d = node Node.([at (e.anchor (`Temporal 0.3));anchor `North]) <<there>>

to our previous diagram gives:

32

n

n

n

i

i

i

o

o

o

c

c

c

Here, anchor `East says that the anchor to use {or placing the node c is `East, while

at (a.anchor `West) says that this anchor should be at a's `West anchor. Anchors are

de~ned using OCaml's polymorphic variants:

type anchor =

[`Angle of float (* In degrees *)

| `North

| `South

| `NorthEast

| `SouthEast

| `NorthWest

| `SouthWest

| `West

| `East

| `Center

| `Main (* The anchor used to draw edges between gentities by default;

Will be `Center by default. *)

| `Base

| `BaseWest

| `BaseEast

| `Line

| `LineWest

| `LineEast

| `Vec of Vector.t

| `Pdf (* The origin when typesetting the contents *)

| `Curvilinear of float (* Between 0. and 1. (for paths) *)

| `CurvilinearFromStart of float (* Between 0. and 1. (for paths) *)

| `Temporal of float (* Between 0. and 1. (for paths) *)

| `Start

| `End

]

33

niocereh

ereht

Initially, that was meant to allow extending them with new anchors, but I'm not sure

i{ that's actually possible. So maybe we'll switch to proper variants someday.

For a given graphical entity, not all anchors have to be de~ned. The only de~ned node

shapes {or now are rectangle and circle. Their anchor {unction signals an error and

return the `Center anchor when they are unde~ned on their argument.

Diagrams comes with a small {acility {or creating matrices. E.g., typing

let m,ms = matrix [] [[

(Node.([draw]),<<A>>) ; ([], <>)

];[

([],<<C>>) ; ([], <<D>>)

]]

let edges l = List.map (fun (x,y) -> edge Edge.([draw;arrow env]) x y) l

let _ = edges (List.map (fun (i,j,k,l) ->

(ms.(i).(j), ms.(k).(l))) [

(0,0,0,1) ;

(0,0,1,0) ;

(0,1,1,1)

])

inside a diagram yields

For 2-category inclined people, we have the use{ul, though still sketchy, re~nement

o{ this:

obtained by

let ab :: ac :: _ = edges (List.map (fun (i,j,k,l) ->

(ms.(i).(j), ms.(k).(l))) [

(0,0,0,1) ;

(0,0,1,0) ;

(0,1,1,1)

34

A

A

B

B

C

C

D

D

])

let ealpha = edge Edge.([double 0.5 ; bendRight 30.;shorten 0.1 0.3;arrow env;draw])

Node.(coordinate (ac.anchor (`Temporal 0.3)))

Node.(coordinate (ab.anchor (`Temporal 0.3)))

And that's all {or now.

4.2 Using the basic interface

The {ollowing code de~nes a {unction named makeGraph, taking as input options,

contents o{ nodes (in the {orm o{ Typography.Box.drawingBox), and edges between

the nodes, calling graphviz on this graph, and parsing the output to produce a

Typography.Box.drawingBox.

open Typography.Box

open Typography.OutputCommon

let ellipse param x y ah av=

translate x y

(Path (param, [Array.map (fun (x,y)->x,Array.map (fun yy->yy*.av/.ah) y)

(circle (ah/.2.))]))

let makeGraph opts nodes_ edges=

let is_space x=x=' ' || x='\n' || x='\t' in

let inf x=if x= -.infinity || x=infinity then 0. else x in

let to_inch x=if x=infinity || x= -.infinity then 0. else (x/.25.4) in

let nodes=Array.map

(fun (x,y)->

let cont=(x.drawing_contents x.drawing_nominal_width) in

let pad=match y with

`Rectangle->2.

| `Ellipse->1.

| _->1.

35

in

let (a,b,c,d)=bounding_box cont in

{ x with

drawing_min_width=inf (c-.a)+.2.*.pad;

drawing_nominal_width=inf (c-.a)+.2.*.pad;

drawing_max_width=inf (c-.a)+.2.*.pad;

drawing_y0=inf b-.pad;

drawing_y1=inf d+.pad;

drawing_contents=(fun _->

List.map (translate (pad-.inf a) 0.) cont

)

},y

) nodes_

in

let i,o=Unix.open_process "dot -Tplain" in

if opts<>"" then

Printf.fprintf o "digraph {\ngraph %s;\n" opts

else

Printf.fprintf o "digraph {\n";

Array.iteri (fun i (x,y)->

match y with

`Rectangle->

Printf.fprintf o "n%d [fixedsize=true, width=%f, height=%f,

shape=box, label=\"\"];\n"

i

(to_inch x.drawing_nominal_width)

(to_inch (x.drawing_y1-.x.drawing_y0))

| `Ellipse->

Printf.fprintf o "n%d [fixedsize=true, width=%f, height=%f,

shape=ellipse, label=\"\"];\n"

i

(sqrt 2. *. to_inch x.drawing_nominal_width)

(sqrt 2. *. to_inch (x.drawing_y1-.x.drawing_y0))

| _->(

Printf.fprintf o "n%d [fixedsize=true, width=%f, height=%f,

shape=box, label=\"\"];\n"

36

i

(to_inch x.drawing_nominal_width)

(to_inch (x.drawing_y1-.x.drawing_y0))

)

) nodes;

List.iter (fun (a,b)->

Printf.fprintf o "n%d -> n%d[arrowhead=none];\n" a b

) edges;

Printf.fprintf o "}\n";

close_out o;

let rec next_token (buf,pos,f)=

(if !pos >= String.length !buf then (buf:=input_line f;pos:=0));

let pos0= !pos in

while !pos<String.length !buf && not (is_space !buf.[!pos]) do

incr pos

done;

let s=String.sub !buf pos0 (!pos-pos0) in

incr pos;

if s<>"" then s else next_token (buf,pos,f)

in

let skip_line (a,b,c)=a:=""; b:=0 in

let number s=float_of_string (if String.contains s '.' then s else s^".") in

let of_inch x=(number x)*.25.4 in

let buf=(ref ""), (ref 0), i in

let w=ref 0. in

let h=ref 0. in

let rec parse l=

let t=try next_token buf with _->"" in

match t with

"graph"->(

let scale=number (next_token buf) in

w:=scale*.(of_inch (next_token buf));

37

h:=scale*.(of_inch (next_token buf));

parse l

)

| "node"->(

let name=next_token buf in

let i=int_of_string (String.sub name 1 (String.length name-1)) in

let x0=of_inch (next_token buf) in

let y0=of_inch (next_token buf) in

let x=x0-.((fst nodes.(i)).drawing_nominal_width/.2.) in

let y=y0-.((fst nodes.(i)).drawing_y1+.

(fst nodes.(i)).drawing_y0)/.2. in

let w=of_inch (next_token buf) in

let h=of_inch (next_token buf) in

skip_line buf;

parse (

(match snd nodes.(i) with

`Rectangle->

[Path ({default with lineWidth=0.1; close=true},

[rectangle

(x,y+.(fst nodes.(i)).drawing_y0)

(x+.(fst nodes.(i)).drawing_nominal_width,

y+.(fst nodes.(i)).drawing_y1)])]

| `Ellipse->

[ellipse

{default with lineWidth=0.1; close=true} x0 y0 w h]

| _->[]

)

@(let node,_=nodes.(i) in

List.map (translate x y)

(node.drawing_contents node.drawing_nominal_width))

@l

)

)

| "edge"->(

let _=next_token buf in

let _=next_token buf in

38

let n=int_of_string (next_token buf) in

let x0=of_inch (next_token buf) in

let y0=of_inch (next_token buf) in

(* Dot output is a sequence of splines. We need to parse this

to get a path with plain Bezier curves. *)

let rec spline n x1 y1 l=

if n<=0 then (List.rev l) else (

let x=Array.make 4 x1 in

let y=Array.make 4 y1 in

for i=1 to 3 do

x.(i)<-of_inch (next_token buf);

y.(i)<-of_inch (next_token buf)

done;

spline (n-3) x.(3) y.(3) ((x,y)::l)

)

in

let path=spline (n-1) x0 y0 [] in

skip_line buf;

parse (Path ({default with lineWidth=0.1}, [Array.of_list path])::l)

)

| ""

| "stop"->

{

drawing_min_width= !w;

drawing_nominal_width= !w;

drawing_max_width= !w;

drawing_y0=0.;

drawing_y1= !h;

drawing_badness=(fun _->0.);

drawing_contents=(fun _->l)

}

| x->(Printf.fprintf stderr "Parse error on input %S" x;exit 1)

in

parse []

39

The ~rst part o{ this {unction starts dot, then outputs the graph in dot syntax to its

standard input. The standard output is then read by {unction next_token, and converted

to constructors o{ OutputCommon.raw.

Since the result o{ makeGraph is a drawingBox, and we need contents lists in the

document tree, the way to use this {unction is the {ollowing:

\Caml(

let graph=[bB (fun _ ->

let a=ê

and b=ê

and c=ê in

[Drawing (makeGraph a b c)]

)

)

For instance, to create a graph with two nodes and an edge between them, you

would do:

\Caml(

let graph=[bB (fun env ->

let opts="[ranksep=0.15,nodesep=0.15]"

and nodes=[| drawing (Document.draw env <<A>>);

drawing (Document.draw env <>) |]

and edges=[|(0,1)|] in

[Drawing (makeGraph nodes edges)]

)]

)

I{ you look at the types, you'll see that Document.draw outputs raw drawing elements

(o{ type Typography.OutputCommon.raw), whereas makeGraph needs |drawing boxes}. A

drawing box is nothing more than raw graphic elements with a bounding box around

them. draw is a {unction computing boundaries, and making boxes out o{ raw graphic

primitives.

One thing you get {or {ree when drawing in Patoline is compatibility with all the

drivers in Patoline. For instance, this code produces an output usable by the SVG driver

on a web page, or by the OpenGL driver in a presentation.

40

This chapter describes the typesetting model used by Patoline. Few users will actually

need this part, unless they are trying to write complicated environments such as itemize.

5.1 How it works

Patoline's optimizer is yet another example o{ dynamic programming, on a somewhat

more complex space than TeX was. You may want to have a look at Knuth's article

describing the algorithm in TeX in . The idea is always the same: cut a document into two

parts, prove that you can typeset them independently, then typeset them and concatenate

compatible results.

The idea in Patoline is that a position in a document is given by a variety o{

parameters: the semantic position in the text (the index o{ a box in a paragraph), the

number o{ ~gures already placed, the current page number, and the vertical height on

this page. Instead o{ being boxes, the badnesses are yunctions, with the ability to evaluate

some aspects in the global document. For instance, at each point, a badness {unction

can know the current page, the position on that page, and the number o{ ~gures already

placed, along with their position.

So, the idea is to build a graph, where each vertex is either a line o{ text or a ~gure,

placed on a page o{ the document. The edges all have a distance, which is the badness

o{ moving {rom a line to the next one. Once the graph is built, Patoline's optimizer uses

D�kstra's algorithm to ~nd the shortest path between the ~rst and the last line.

The algorithm has a notion o{ |current nodes}. For each o{ them:

1. A list o{ all the possible continuations is computed.

5.2 Controlling the optimizer

One thing to keep in mind, when writing such {unctions, is that they may be called by

the optimizer several times, on dif{erent attempts to typeset the document. But only one

o{ these attempts will be selected. So write all the {unctional parts o{ your {unctions as i{

41

Understanding the5
typesetting model

the document was the ~nal version, but be care{ul i{ you use imperative {eatures o{ ocaml,

such as re{erences, or other kind o{ side ef{ects.

5.2.1 Parameters {unctions

5.2.2 Completion and badness

42

6.1 The default parser

6.2 Writing parsers

6.3 Writing formats

6.4 Writing output drivers

43

Extending Patoline6

44

When you compiled Patoline, it generated a {ree emacs mode in a directory called

emacs, at the root o{ the Patoline source tree. In order to use it, copy all the ~les in this

directory to some place on your ~le system, say /path/to/patoline, and then append

the {ollowing lines to your ~/.emacs:

(add-to-list 'load-path "/path/to/patoline/")

(require 'patoline-mode)

This mode also gets installed to a de{ault location emacs knows o{, when you install

Patoline by invoking make install at the root o{ the Patoline source tree. In order to use

it, you must install mmm-mode and tuareg-mode.

45

Patoline and text editors7

46

Patoline itsel{ is distributed under the terms o{ the Gnu General Public License.

47

License8

48

49

Bibliography9

	
	Why Patoline ?
	First documents
	Paragraphs and sections
	More structure
	Theorems and definitions
	Counters
	Style
	Including from external files
	First drawings

	Mathematical formulas
	Typing maths in patoline
	Extending the maths grammar

	Macros and environments
	The eight layers of Patoline
	Text and maths macros
	Defining environments
	Document zippers

	Accessing Patoline syntax from within \\Caml
	Compilation options, formats and drivers
	Formats
	Drivers

	Drawings
	Using Diagrams
	Using the basic interface

	Understanding the typesetting model
	How it works
	Controlling the optimizer
	Parameters functions
	Completion and badness

	Extending Patoline
	The default parser
	Writing parsers
	Writing formats
	Writing output drivers

	Patoline and text editors
	License
	Bibliography

